Optimal control for quasi-Newtonian flows with defective boundary conditions
نویسنده
چکیده
We consider a generalized-Newtonian fluid with defective boundary conditions where only flow rates or mean pressures are prescribed on parts of boundary. The defect boundary condition problem is formulated as an optimal control problem in which a Neumann or Dirichlet boundary control is used for matching given flow rates or mean pressures. For the constrained optimization problem an optimality system is derived from which a solution of the problem is obtained. Computational algorithms are discussed and numerical results are also presented. 2011 Elsevier B.V. All rights reserved.
منابع مشابه
Numerical Solution of Reacting Laminar Flow Heat and Mass Transfer in Ducts of Arbitrary Cross-Sections for Newtonian and Non-Newtonian Fluids
This study is concerned with the numerical analysis, formulation, programming and computation of steady, 3D conservation equations of reacting laminar flow heat and mass transfer in ducts of arbitrary cross-sections. The non-orthogonal boundary-fitted coordinate transformation method is applied to the Cartesian form of overall-continuity, momenta, energy and species-continuity equations, parabo...
متن کاملNumerical Approximation of a Quasi-Newtonian Stokes Flow Problem with Defective Boundary Conditions
In this article we study the numerical approximation of a quasi-Newtonian Stokes flow problem where only the flow rates are specified at the inflow and outflow boundaries. A variational formulation of the problem, using Lagrange multipliers to enforce the stated flow rates, is given. Existence and uniqueness of the solution to the continuous, and discrete, variational formulations is shown. An ...
متن کاملDiscontinuous Galerkin Finite Element Approximation of Quasilinear Elliptic Boundary Value Problems Ii: Strongly Monotone Quasi-newtonian Flows
In this article we develop both the a priori and a posteriori error analysis of hp– version interior penalty discontinuous Galerkin finite element methods for strongly monotone quasi-Newtonian fluid flows in a bounded Lipschitz domain Ω ⊂ R, d = 2, 3. In the latter case, computable upper and lower bounds on the error are derived in terms of a natural energy norm which are explicit in the local ...
متن کاملThe effect of boundary conditions on the accuracy and stability of the numerical solution of fluid flows by Lattice-Boltzmann method
The aim of this study is to investigate the effect of boundary conditions on the accuracy and stability of the numerical solution of fluid flows in the context of single relaxation time Lattice Boltzmann method (SRT-LBM). The fluid flows are simulated using regularized, no-slip, Zou-He and bounce back boundary conditions for straight surfaces in a lid driven cavity and the two-dimensional flow ...
متن کاملNewtonian and Non-Newtonian Blood Flow Simulation after Arterial Stenosis- Steady State and Pulsatile Approaches
Arterial stenosis, for example Atherosclerosis, is one of the most serious forms of arterial disease in the formation of which hemodynamic factors play a significant role. In the present study, a 3-D rigid carotid artery with axisymmetric stenosis with 75% reduction in cross-sectional area is considered. Laminar blood flow is assumed to have both Newtonian and non-Newtonian behavior (generalize...
متن کامل